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a  b  s  t  r  a  c  t

Run-to-run  (R2R)  process  control  has  attracted  much  attention  in research  and  has  been  widely  used
in practice.  It has  been  proved  effective  at compensating  for process  disturbances  by  using R2R  con-
trollers  at  a  single  stage.  However,  most  manufacturing  processes  span  across  multiple  stages;  variation
in earlier  stages  can  be magnified  stage  by  stage  if  they  are  not  properly  eliminated.  In addition,  prod-
ucts  are  processed  batch  by batch  in  certain  manufacturing  processes.  In  such  cases,  the traditional
eywords:
atch allocation
ultistage processes

un-to-run control
lustering algorithm

EWMA  controller  might  not  effectively  reduce  the  variation.  This  paper  focuses  on  developing  a  pro-
cess  control  strategy  for batch  production  in  a  multistage  process.  In  the  newly  proposed  framework,  a
batch-allocation  operation  is  introduced  to  group  products  into  similar  clusters  before  each  stage;  an  R2R
controller is  then  implemented  to generate  customized  recipes  for each  batch.  This  framework  empha-
sizes  better  coordination  among  the  stages  in  a multistage  process.  Simulation  results  show  that  the
proposed  strategy  is effective  for the reduction  of  variation.

iety o
© 2012 The Soc

. Introduction

In semiconductor manufacturing processes, products are always
rocessed run by run. Each run is an undividable cycle within which
easurements of quality results are unavailable. Process drifts and

hifts can occur between different runs for many reasons, such as
he tools wearing out, operators switching, the working conditions
hanging, and the machines becoming unstable. To compensate
or these process drifts or shifts, run-to-run (R2R) process con-
rol methods have attracted extensive attention in quality control
esearch and have been widely used in practice [1].  Such con-
rollers usually use outputs from previous runs to generate optimal
ecipes for new runs, to seek better compensation for process
isturbances and to achieve higher quality [2].  Because most man-
facturing processes naturally span multiple stages, and variations

n such multistage processes tend to propagate across stages [3],  it
s important to implement appropriate process control algorithms,
oordinating inputs and outputs across multiple stages, optimizing
ecipes for each stage and minimizing the output variation [4].

Consider the wafer preparation process as an example. As shown
n Fig. 1, there are almost ten major steps from crystal pulling to

afer packaging. Each stage takes the output from its preceding
tage as its input and sends its output farther down, to its down-

tream stages. Thus, the deviations at one stage are transferred into
ubsequent stages; if no effective control actions are taken, then

∗ Corresponding author.
E-mail address: kbwang@tsinghua.edu.cn (K. Wang).

278-6125/$ – see front matter ©  2012 The Society of Manufacturing Engineers. Publishe
ttp://dx.doi.org/10.1016/j.jmsy.2012.12.004
f Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

such deviations become larger and larger and could finally harm
the quality of the finished products.

In the wafer preparation process, another important issue is that
wafers are processed in batches with variable sizes. For example, a
slicing run can generate 300 wafers. These wafers are put together
and moved through the rest production stages. When these wafers
reach the lapping stage, since the lapping machine can only handle
50 wafers each time (this is limited by the capacity of the lap-
ping plate), these wafers have to be clustered into 6 batches and
be processed sequentially. Similarly, when these 300 wafers reach
the etching stage, since the capacity of the etching chamber is 100,
these wafers need be clustered into 3 batches. Therefore, wafers
must be grouped or un-grouped between stages to satisfy the batch
size limitation of each stage.

This batch-based feature is in fact quite commonly seen in
semiconductor manufacturing because of the equipment capacity
constraint. Therefore, to achieve better quality in a multistage man-
ufacturing process, the following two  problems become critical:

(a) How to allocate products (wafers, in the example studied in this
work) in appropriate batches so that the transmission of varia-
tion is minimized and the final product quality is optimized.

(b) How to design control strategies (generate optimal recipes) for
each stage at each run by considering both the grouping infor-
mation and the output information from previous runs.
Intuitively, unique opportunities exist in controlling a multi-
stage process. For example, the bow of a wafer (defined in Fig. 2)
measures its curvature. A wafer with a large bow value after slicing
could be improved if a faster rotation speed is used in the lapping

d by Elsevier Ltd. All rights reserved.
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Fig. 1. The wafer preparation process.
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Fig. 2. Definition of “bow” for a wafer.

tage or less time is used in the etching stage. In other words,
n a multistage process, there are opportunities for downstream
tages to systematically compensate for deviations that resulted
rom upstream stages by using customized recipes. Therefore, the
mplementation of process control by considering the coordination
f multiple stages is important in such a process.

The objective of this work is to develop a run-to-run process
ontrol framework for a multistage manufacturing process (MMP).
n the multistage R2R control setting, the variation in the incoming
nformation from an upstream stage could be treated as observable
ut uncontrollable noise that moves to a downstream stage. Such
oises could be compensated by well-designed batch-allocation
trategies and control actions. This idea is well illustrated in Fig. 3.

Compared to the conventional R2R control framework for a sin-
le stage, there are two key features in the framework in Fig. 3. First,

 batch allocator is added to the model. The outputs from stage k,

hich have a large overall variation, are split into batches, each

f which have a smaller variation, and are fed into stage k + 1. The
ore of the batch allocator is a clustering algorithm for reducing
ithin-batch variation. Second, the R2R controller equipped for

Fig. 3. A batch-based R2R control framework f
ring Systems 32 (2013) 372– 381 373

each stage is updated to take batch information as one of its inputs.
A customized recipe can be generated for each batch to reduce
batch-to-batch variation. Therefore, the batch allocator makes it
possible to have a finely tuned recipe, and an implementation of
the R2R controller that is based on both the feedback and the feed-
forward information is expected to be effective at reducing the
propagation of variation.

The rest of the paper unfolds as follows. In Section 2, a literature
review on the recent research that is relevant to R2R process control
and multistage process modeling is first presented. In Section 3, the
batch-based R2R control strategy for a single stage is shown. Section
4 extends the framework to a process having multiple stages. In
Section 5, the performance of the proposed control framework is
studied and is compared with an existing controller. Finally, Section
6 concludes this work with suggestions for future research.

2. Literature review on run-to-run control and multistage
process modeling

Conventionally, R2R controllers have been designed to com-
pensate for process disturbances in a single stage. Among others,
the exponentially weighted moving average (EWMA) controller [5]
and the double EWMA  controller [6] have been extensively stud-
ied because of their simplicity and robust performance. Various
extensions of these controllers also appear in the literature. Del
Castillo and Hurwitz [1] provided a literature review of R2R con-
trol methods from a statistical and control engineering point of
view and proposed a self-tuning controller based on the recursive
least square estimation method to provide better control perfor-
mance. Those control filters are all developed using quantitative
rather than qualitative measurements. Wang and Tsung [7],  Shang
et al. [8],  Wang and Tsung [9] and Lin and Wang [10] proposed an
R2R control scheme that uses categorical measurements for pro-
cess adjustment. However, most of the methods in the literature
utilize a single-output model.

Tseng et al. [11] investigated the control of a multiple-
inputs–multiple-outputs (MIMO) process using a multivariate
exponentially weighted moving average (MEWMA) controller with
a variable discount factor. The authors showed the feasible region
and the approximate solution for the optimal discount factor. Del
Castillo and Rajagopal [12] also extended the univariate double
EWMA  method to a MIMO  double EWMA  controller and pointed
out that the performance of the MIMO  controller is superior to

that of several single-input–single-output (SISO) controllers. Fan
and Wang [13] extended the EWMA  controller based on a neural
network online tuning approach for SISO models [14] to a double
EWMA  controller for MIMO  models. Jen et al. [15] also focused

or multistage manufacturing processes.
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n the development of an R2R controller for MIMO  processes.
hese authors set up a self-tuning control framework instead of
WMA and updated process parameters by a recursive least squares
RLS) algorithm. He et al. [16] proposed a General Harmonic Rule
ontroller. Details of several popular techniques for R2R control
trategy other than the EWMA  algorithm and their extensions to
IMO  processes can also be found in the literature.
Campbell et al. [17] surveyed four types of popular R2R control

ethodologies, including EWMA  control, predictor-corrector con-
rol (PCC), model predictive control (MPC), and optimizing adaptive
uality control (QAQC). Wang et al. [18] discussed and compared
he performance of EWMA,  double EWMA,  IMC, and RLS con-
rollers in the presence of a drift, a step disturbance, measurement
oises and modeling errors. Additionally, Chen et al. [19] presented

 universal methodology for accessing the performance of R2R
ontrollers in semiconductor manufacturing based on an internal
odel control (IMC) structure, and they validated their methodol-

gy by using examples of EWMA  control, double EWMA  control and
ecursive-least-squares locally linear-trend (RLS-LT) control. Good
nd Qin [20] discussed several common MIMO  control laws and
nvestigated the necessary and sufficient conditions for the stabil-
ty of a MIMO  EWMA  R2R controller, without and with a metrology
elay. In most of the previous research, the stability of the EWMA
ontrol is discussed for long production runs, and discount factors
re fixed constants. Such controllers might not be practical for a
rocess with short runs or for a model with a poorly estimated
rift rate. For those cases, new control schemes are proposed, such
s the initial intercept iteratively adjusted (IIIA) controller [21], the
ariable EWMA controller [22] and the adaptive variable controller
23].

The studies described above have one feature in common: these
ontrollers are all designed for a single stage; this stage is optimized
y considering its own dynamics, outputs and deviations. In real
roduction scenarios, however, a stage is usually connected to pre-
eding and subsequent stages. To improve the quality of the final
roduct, it is important to accomplish coordination and optimiza-
ion while considering all of the stages.

Joseph [24] discussed a parameter design methodology for
hen the process is under feedforward control, which means

hat the input information from a preceding stage is considered
n the experimental design. However, this work is targeted to
obust parameter design rather than to process control. In addi-
ion, feedback information is not considered in this work. Leang
nd Spanos [25] introduced a supervisory control framework and
emonstrated the use of feedforward/feedback control in a pho-
olithography process in semiconductor manufacturing. Incoming
ritical dimensions are first plotted on a control chart. If the chart
roduces a signal, which means that the incoming batch is very

ikely to be a defect after processing if no special measures are
aken, then a feedforward controller is activated to compensate for
he known deviation in the incoming batches and to drag the pre-
icted output closer to the target, thereby minimizing the output
ariation. A feedback controller is also placed in the process and
ill be activated if control alarms are generated by a control chart.

There is an extensive set of research in the process control lit-
rature that combines feedforward and feedback control (see, e.g.,
26,27]). However, because of the difference in the process model
nd the system dynamics, those algorithms cannot be used directly
or an R2R process. Del Castillo [28] highlighted the uniqueness of
tatistical process adjustments in quality control.

Because the multistage approach is quite common in practice,
t is very important to extend the control strategy to multistage

rocesses. The propagation of variation in a multistage process has
een extensively studied in the literature (see, e.g., [29–32]). Jin and
hi [30] incorporated engineering knowledge to depict the tran-
ition of quality variation in sheet metal assembly for dimension
ring Systems 32 (2013) 372– 381

control; the authors developed a state-space modeling approach
to characterize the overall body assembly variation propagation.
This linear state space modeling approach was  later extended to
more complicated cases, such as serial-parallel multistage pro-
cesses [32]. Based on such a MMP  model, analysis of the process’s
diagnosability and the fault diagnosis of MMP  have been studied
by Ding et al. [33,34], Zhou et al. [35], Huang and Shi [36] and
Li et al. [37]. Because of the specific engineering interests, most
of the researchers focused on process modeling and fault diagno-
sis. Process control and monitoring based on multistage models
have not yet been thoroughly studied. Tsung and Xiang [38] pro-
posed a group-monitoring scheme for quality measurements based
on a multistage model in linear state space form. However, they
concentrated mainly on the development of control charts rather
than control algorithms that minimize process variation. Therefore,
there is still a lack of statistical control techniques for controlling
multistage processes.

Wang and Han [39] discussed the use of the batch-allocation
idea in a semiconductor manufacturing process; the authors stud-
ied the implementation of batch-allocation for a single stage with
the considering of inputs transmitted from one upper stage. In this
work, we  focus on the development of a coordination and control
framework for a multistage process with multiple variables. In the
following, we  first start from the modeling and control of a single
stage, then extends the framework to a multistage scenario.

3. Batch-based R2R control strategy for a single stage

In this section, a MIMO  process model for a single-stage man-
ufacturing process is presented first; the variation in the process
output is given in the form of the mean squared error (MSE) and is
decomposed into within-batch variation and batch-to-batch varia-
tion. Following the decomposition, the objective functions for batch
allocation and for the process controller are developed separately.
The model and algorithms in this section will be extended to a
multistage process in the next section.

For clarity and consistence, in this work, matrices are all written
in capital bold letters, vectors in bold lower cases, and scalars in
plain letters.

3.1. MIMO process model

Suppose one manufacturing station has r controllable variables
and d response (quality) variables; the input (which is the output of
the previous stage) has s variables. We  propose to use the following
equation to characterize the output of the batch-based R2R process:

yij = � + Axij + Bui + �ij. (1)

where yij, i = 1, . . .,  n, j = 1, . . .,  M,  is a d-dimensional vector, repre-
senting the measure of the jth workpiece in batch i after processing,
and xij is a s-dimensional vector, representing the measure of
the same workpiece before processing; � = (˛1, . . .,  ˛d)T is a d-
dimensional intercept vector, and ui is a r-dimensional vector,
which represents the recipe for batch i; A = (a1, . . .,  ad)T is a d × s
coefficient matrix that shows the impact of input quality status
on output quality; B = (b1, . . . , bd)T is a d × r matrix, which shows
the impact of the control factors on the process outputs. Here,
we assume that batch i, i = 1, 2, . . .,  is processed sequentially, at
time t = i. To emphasize the batch-based feature, we use subscript
i instead of t to index each batch. The process disturbance is repre-
sented by a d-dimensional vector �ij.

Eq. (1) is a natural extension of the conventional MIMO  mod-

els used by Tseng et al. [11], Del Castillo and Rajagopal [12] and
others; it can also be considered the simplified state-space model
used in Jin and Shi [30]. According to our study, this equation is also
adequate and convenient to model the wafer preparation process
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hat is illustrated above. In addition, this regression model could be
sed to characterize any of the processes that have a similar linear
elation between the input, the controllable variables and the out-
ut. Therefore, we treat this equation as a basic model for further
tudy.

In an R2R controller designed for the process described in Eq. (1),
he parameter estimate of � should be updated from batch to batch
o compensate for the potential initial bias and the batch-to-batch
ifferences in the incoming materials. Furthermore, the incoming

nformation for each workpiece, xij, is assumed to be known in the
odel. This term could be used to represent any in priori known

nformation that could affect the final output yij.
To achieve a higher process capability and quality level, it is

esirable to optimize the process recipes so that the mean sum of
quared errors of the process output is minimized. We  start the
llustration using a simpler MISO system, which has a single target
alue � for its output y. The MSE  of n batches, each with a fixed
atch size M,  is defined as

SE  = 1
nM

n∑
i=1

M∑
j=1

(yij − �)2 = 1
nM

n∑
i=1

M∑
j=1

(yij − �i)
2

+ 1
n

n∑
i=1

(�i − �)2. (2)

here �i is the average output value of batch i. The first term in the
quation illustrates the within-batch variation, while the second
erm reflects the batch-to-batch variation.

When extended to a multiple-input–multiple-output (MIMO)
rocess, a weighting matrix � = diag{ω2

1, · · ·,  ω2
d
} is required to

ccount for the importance of the different components of yij, i.e.,
ij1, . . .,  yijd. The weighting matrix could take any general form,
hile for simplicity, only a diagonal matrix is discussed in this work.

et � = (�1, . . .,  �d)T be the target of yij. Correspondingly, the MSE
or an MIMO  system is given by

SE  = 1
nM

d∑
p=1

ω2
p

n∑
i=1

M∑
j=1

(yijp − �ip)2 + 1
n

d∑
p=1

ω2
p

n∑
i=1

(�ip − �p)2.

(3)

here �ip is the average of variable p of batch i. Similar to Eq. (2),
he first term in Eq. (3) represents the within-batch variation, while
he second term represents the batch-to-batch variation. Next, we
hall seek methods for minimizing these terms.

.2. Data clustering for batch allocation

To minimize the within-batch variation in Eq. (3),  for the Pth
ariable of a wafer in the ith batch, it is given that

ip = ˛p + aT
p x̄i + bT

pui,

he expectation of the first term of Eq. (3) can therefore be rewritten
s (apart from a constant)

1 = 1
nM

d∑
p=1

ω2
p

n∑
i=1

M∑
j=1

(aT
p(xij − x̄i))

2
.

r equivalently,

1 = 1
n∑ M∑

(xij − x̄i)
T �(xij − x̄i), (4)
nM
i=1 j=1

here � = diag {q1, . . .,  qs}, qp =
∑d

p′=1ω2
p′ a2

pp′ , p = 1, . . .,  s, and s is
he dimension of xij. This function measures the distance of each
ring Systems 32 (2013) 372– 381 375

input to a batch mean. That is, in order to reduce the within-batch
variation in the process output, we  should make the workpieces in
the same batch more uniform.

To minimize Eq. (4),  the conventional clustering algorithm,
which minimizes the distance of each point to a cluster center,
could be borrowed. In the process control scenario illustrated in
this work, there are some unique constraints that are different
from the usual cluster problem. For example, the cluster (batch)
size is limited because of machine capacity constraints; the num-
ber of all of the clusters should be equal so that the machine
utilization is maximized. The K-Means algorithm is a popular
method for clustering (see [40] for a brief review). Wang and
Han [39] modified the K-Means clustering algorithm to solve the
univariate version of Eq. (4).  This algorithm can be applied in
this study to minimize the within-batch variation in a multivari-
ate scenario. For more information about the K-Means algorithm,
refer to Hastie et al. [41]. The pseudo-code of the modified K-
Means algorithm for batch allocation used in this work is given
in Appendix.

3.3. Run-to-run process control

The clustering strategy introduced above can be used to min-
imize the within-batch variation in Eq. (3); the between-batch
variation will be minimized if the means of all of the clusters are
close to the target. This result is expected to be achieved with the
aid of an R2R controller.

In the R2R control scenario, the estimation accuracy of param-
eters should be considered. Let Â  and B̂ be  the estimates of the
dynamic matrix A and control matrix B, and �i−1 be the estimate
of � obtained after batch i − 1. It is known from Eq. (1) that the
predicted batch mean of an MIMO  system in run i (batch i) is given
by

�i = �i−1 + Âx̄i + B̂ui, i = 1, 2, . . . , n. (5)

To minimize the between-batch variation, the recipe should be set
such that �i = � is satisfied. Considering that there are multiple
choices of ui when the number of controllable factors is larger than
the number of output variables, the new recipe ui can be obtained
by solving the following constrained problem:

Min  (ui − ui−1)T (ui − ui−1),

s.t. � = �i−1 + Âx̄i + B̂ui.

The intuitive meaning of this optimization problem is to bring the
mean of the process output for batch i to the desired target with the
smallest possible adjustments. Such a constraint is helpful to reduce
the adjustment cost. Other types of adjustment cost models have
been considered by Del Castillo et al. [42]. Tseng et al. [11] proved
that the following equation is the solution to the above objective
function:

ui = (I − B̂
T
(B̂B̂

T
)
−1

B̂)ut−1 + B̂
T
(B̂B̂

T
)
−1

(� − �i−1 − Âx̄i). (6)

This control strategy is similar to the traditional MEWMA  controller
except that the mean of each batch is taken into consideration.

Because of a potential initial bias and process disturbance, it is
essential to update the estimate of � when the process evolves.
Denote a constant � as the discount factor for updating the model
run by run. In Eq. (1), the incoming information xij is known; we
propose to update � by using the following equation:
�i = �(yi − Axi − Bui) + (1 − �)�i−1. (7)

In this way, the batch-allocation operation minimizes the
within-batch variation, and the R2R controller minimizes
the between-batch variation. The integrated use of batch



3 ufactu

a
t
t
a

4

p
a
s
s
a

p
a

y

w
k

t
a
c
a
d
m
o
F
f

A

a

�

T
a

�

T
c⎡
⎢⎢⎢⎢⎣
76 K. Han, K. Wang / Journal of Man

llocation and R2R control is, therefore, expected to improve
he quality of a single stage. In the following section, we extend
his formulation to the framework shown in Fig. 3 and apply it to

 multistage manufacturing process.

. Batch-based R2R control strategy for multiple stages

In Section 3, we have presented a batch-based multivariate R2R
rocess control strategy, which contains a clustering operation and

 batch-based MEWMA  controller. The above study is focused on a
ingle stage. In this section, we develop a batch-based R2R control
trategy for a multivariate multistage process. We  call this strategy

 Batch-MMP controller.
Consider an MIMO  process with N stages (for notational sim-

licity, we remove the subscript i, j, p that were used in Section 3
nd focus on stage differences instead)

k = �k + Akxk−1 + Bkuk + �k, k = 1, . . . , N. (8)

here k is the stage to be studied. In most cases, the output of stage
 is the input of stage k + 1, that is, xk = yk.

The purpose of controlling a multistage process is to improve
he quality of the final output. Although a product could devi-
te from the target in the middle stages, as long as the deviation
an be corrected by the other stages, the product will be treated
s qualified in the final inspection. Therefore, we  need to pre-
ict the final status of a product when it is still at an early or
iddle stage. Next, we expand the input–output model across all

f the stages, for the analysis of the final output to be analyzed.
or stage k, k ∈ {1, 2, . . .,  N}, we define the transition matrix as
ollows:

k,j =
{

Ak, k = j,

Aj, . . . , Ak, k  < j.
(9)

nd the intercept vector as the following:

k,j =

⎧⎪⎪⎨
⎪⎪⎩

�k, k = j,

j−1∑
q=k

Aq+1,j�q + �j, k < j.
(10)

he noise vector under the condition that there is no re-clustering
ction after stage k is:

k,j =

⎧⎪⎪⎨
⎪⎪⎩

�k, k = j,

j−1∑
q=k

Aq+1,j�q + �j, k < j.
(11)

hus, for k = 1, . . .,  N, the input–output model of stage k, k + 1, . . .,  N
an be written as

xk

xk+1

...

xN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�k,k

�k,k+1

...

�k,N

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

Ak,k

Ak,k+1

...

Ak,N

⎤
⎥⎥⎥⎥⎦ · xk−1

+

⎡
⎢⎢⎢

Bk 0 · · · 0

Ak+1,k+1Bk Bk+1 · · · 0

⎤
⎥⎥⎥

⎡
⎢⎢⎢

uk

uk+1

⎤
⎥⎥⎥ +

⎡
⎢⎢⎢

�k,k

�k,k+1

⎤
⎥⎥⎥ .
⎢⎣ ...

...
. . .

...

Ak+1,NBk Ak+2,NBk+1 · · · BN

⎥⎦⎢⎣ ...

uN

⎥⎦ ⎢⎣ ...

�k,N

⎥⎦
(12)
ring Systems 32 (2013) 372– 381

Because E(�k) = 0 for k = 1, 2, . . .,  N, we  obtain the mean vectors from
Eq. (12) as follows:

E

⎡
⎢⎢⎢⎢⎣

xk

xk+1

...

xN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�k,k

�k,k+1

...

�k,N

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

Ak,k

Ak,k+1

...

Ak,N

⎤
⎥⎥⎥⎥⎦ · E(xk−1)

+

⎡
⎢⎢⎢⎢⎣

Bk 0 ·  · · 0

Ak+1,k+1Bk Bk+1 · · · 0

...
...

. . .
...

Ak+1,NBk Ak+2,NBk+1 · · · BN

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

uk

uk+1

...

uN

⎤
⎥⎥⎥⎥⎦ . (13)

In addition, the covariance matrices are obtained as follows:⎡
⎢⎢⎢⎢⎣

Cov(xk)

Cov(xk+1)

...

Cov(xN)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Ak,k

Ak,k+1

...

Ak,N

⎤
⎥⎥⎥⎥⎦ · Cov (xk−1) ·

⎡
⎢⎢⎢⎢⎢⎣

AT
k,k

AT
k,k+1

...

AT
k,N

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

Cov(�k,k)

Cov(�k,k+1)

...

Cov(�k,N)

⎤
⎥⎥⎥⎥⎦ . (14)

The objective of MMP  process control is to minimize the MSE  of the
final process output. Because of the propagation of variation across
multiple stages, each stage should be well controlled. Suppose that
we are now facing the control of stage k. To minimize the final MSE,
we express the final output, yN, or equivalently, xN, as a function
of the input to stage k, and all of the future settings of controllable
variables:

xN = �k,N + Ak,Nxk−1 + f (uk, . . . , uN) + �k,N, (15)

where f(uk, . . .,  uN) is a linear combination of uk, . . .,  uN.
Therefore, at stage k, if all of the future control actions have been

applied, then the expected output should be

�N = �k,N + Ak,N�k−1 + f (uk, . . . , uN). (16)

If the recipe for each stage always makes the stage output on
target, i.e., �k = �, then we obtain the ideal case for Eq. (16):

�N = �k,N + Ak,N�k−1 + f (uk, . . . , uN). (17)

Then, xN − �N = Ak,N(xk−1 − �k−1) + �k,N, and thus,

MSE = E((xN − �N)T �(xN − �N))

= E((xk−1 − �k−1)T AT
k,N�Ak,N(xk−1 − �k−1)).

Hence, to minimize the MSE  of the final output, the input to stage
k should be clustered so that the following function is minimized

Min

⎧⎨
⎩M1 = 1

nM

n∑
i=1

M∑
j=1

(xij − x̄i)
T Q(k)(xij − x̄i)

⎫⎬
⎭ . (18)

where Q(k) = AT
k,N�Ak,N.
The same induction as illustrated above could be applied to all of
the stages. In other words, to make the final process output uniform,
the input of each stage should be clustered, such that the within-
batch variation is minimized before entering a downstream stream.
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Fig. 4. Propagation of variation. Left: distribution of the points

owever, Eq. (18) does not consider the re-clustering effect before
tages and estimation uncertainties of AK,N. If the batch-allocation
peration is carried out before each stage, it is more convenient to
inimize the output of the immediate downstream stage. When

ach stage is controlled tightly, the variation of the final output is
xpected to be reduced.

To better understand the necessity for batch allocation after
ach processing stage, we use a two-dimensional example for
llustration. As shown in Fig. 4, the distribution of points in the
lane coordinate system become more diverse after processing;
he enlarged circles are more overlapped. Therefore, after each
tage, there is a chance to reduce the within-batch variation by
e-clustering all of the points.

More precisely, the covariance matrix of xN in Eq. (15) is given
y

ov(xN) = Ak,NCov(xk−1)AT
k,N + Cov(�k,N). (19)

uppose that no clustering operation is applied after stage k; in
ther words, batch allocations remain the same after stage k. Thus,
e can track the variation across stage k, k + 1, . . .,  N, according to

q. (14).
According to Eq. (11), �k,k+1 = Ak+1�k + �k+1, and the second part

f Eq. (19), Cov(�k,N), can be written as

ov(�k,N) =
N−1∑
q=k

Aq+1,NCov(�q)AT
q+1,N + Cov(�N).

n other words, the disturbances are accumulated and magnified
tage by stage, and finally, it is applied to the final output. To reduce
he accumulation effect, it is therefore necessary to first re-cluster
ll of the products after each stage; then, the customized recipes
ust be used to compensate for the deviation at each stage.
Once the batch allocation step is finished, the R2R controller

hown in Eq. (6) could be implemented to generate recipes for each
tage.

It should be noted that the main purpose of this work is to
ncourage the idea of improving quality through better coordina-
ion among the stages by using batch allocation and customized
2R control. The specific clustering algorithm and the R2R con-
roller used in this work could be replaced by other algorithms. For

xample, batch-allocation could be formulated as an integer pro-
ramming problem (see, e.g., [40]). Other R2R controllers that were
eviewed in Section 1 of this work could be chosen on the basis of
he process dynamics.
e processing; right: distribution of the points after processing.

5. Performance study

In this section, we  study the performance of the Batch-MMP
controller by simulation. In the simulation, a two-stage manufac-
turing process is studied. Performances of the traditional EWMA
controller and the Batch-MMP controller are compared. Because
process disturbances are usually described by a white noise and
IMA  time series in the literature [1,7], both types of disturbances
are considered here.

5.1. Performance study under white noise disturbance

Without loss of generality, we study here a process that has two
stages, i.e., N = 2. A two-stage MIMO  process model can be described
by{

x1 = �1 + A1x0 + B1u1 + �1,

x2 = �2 + A2x1 + B2u2 + �2.

The final output is given by

x2 = �1,2 + A1,2x0 + A2B1u1 + B2u2 + �1,2, (20)

where �1,2 = �2 + A2�1, A1,2 = A2A1, and �1,2 = A2�1 + �2.
Consider a specific case with the following arbitrary settings:⎧⎪⎪⎨

⎪⎪⎩
x1 =

[
5

2

]
+

[
2 1

0 2

]
x0 +

[
−2 0

0 −1

]
u1 + �1,

x2 =
[

10

8

]
+

[
2 1

1 3

]
x1 +

[
−2 −1

−1 −2

]
u2 + �2.

(21)

where ε1, ε2 ∼ N2(0, I2). The target of the two stages is set as

�1 =
[

15

9

]
, �2 =

[
7

5

]
.

The initial input x0 satisfies

x0∼N2(�0, �0), �0 =
[

20

10

]
, �0 =

[
9 0

0 4

]
. (22)

The weight matrix is set as

� =
[

3 0

0 4

]
.

The evaluation of the control performance is then conducted by

following the procedures (repeated for 100 times):

(1) Estimate the process parameters from historical data. The
parameters to be estimated include �1, A1, B1, �2, A2, and B2;
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Table  1
The MSEs of the outputs for all of the stages.

Controller Stage Target Mean of all 36,000 observations Covariance of all 36,000 observations Average MSE

EWMA  controller
Initial input (20,10) (20.01,9.98)

[
8.96 0.01
0.01 3.98

]
36.70

Stage  1 (15,9) (14.17,8.45)

[
39.59 8.36
8.36 15.85

]
278.56

Stage  2 (7,5) (0.42,1.62)

[
90.17 55.62
55.62 57.24

]
384.44

Batch-MMP controller
Initial input (20,10) (19.99,9.98)

[
9.03 0.01
0.01 3.98

]
43.75

Stage  1 (15,9) (14.17,8.45)

[
8.19 −3.03

−3.03 5.76

]
54.31

(

(

(

(

(

a
m
c
w
g
r
f
w
a
t
i
v

Stage  2 (7,5) (7.63,5.50)

use the means of the historical control actions to set the initial
u1, u2.

2) Generate 360 “workpieces” according to the distribution given
in (22).

3) Stage 1—cluster those 360 workpieces into batches by minimiz-
ing Eq. (18); the size of each batch is set to 30.

4) Stage 1—process the workpieces batch by batch; in this process,
determine the control actions for each coming batch, based on
the batch mean, and update the intercept vectors �1 after each
batch.

5) Stage 2—re-cluster the 360 workpieces that are processed by
stage 1 into 20 batches.

6) Stage 2—process the workpieces batch by batch; in this process,
determine the control actions for each coming batch based on
the batch mean, and update the intercept vectors �2 after each
batch.

In the above simulation study, both the Batch-MMP controller
nd the traditional single-stage EWMA  controller were imple-
ented to make a performance comparison. The Batch-MMP

ontroller employs the batch-allocation algorithm to minimize
ithin-batch variation, while the conventional EWMA  controller

roups workpieces into clusters randomly. The simulation run is
epeated for 100 times; the average output and MSE  are calculated
or each stage. The results are shown in Table 1. It is evident that,
ith the EWMA  controller, the MSE  increased from 36.70 to 278.56
fter stage 1 and increased to 384.44 after stage 2. In other words,
he variation of the process is magnified stage by stage. Instead,
f the process is controlled by the Batch-MMP controller, then the
ariation is maintained at a low level. As a result, compared to the

Fig. 5. The MSEs for al
[
9.61 −2.00

−2.00 6.81

]
68.54

EWMA  controller, the Batch-MMP controller can reduce the process
variation and can improve the quality greatly.

Fig. 5 shows the MSEs for all of the 100 replicates. The solid lines
refer to the MSEs of the EWMA  controller, while the dashed lines
refer to those of the Batch-MMP controller. The figure shows clearly
that the two dashed lines fall below the solid lines. Thus, we  can
arrive at the conclusion that the Batch-MMP controller performs
well when reducing the output MSEs for an MMP.

5.2. Performance study under an IMA disturbance series

In the case above, the process disturbances are assumed to be
white noise, which are given as �1,�2 ∼ N2(0,I2). In some cases, an
IMA series could better illustrate a non-stationary process disturb-
ance [7,43].  Therefore, in the following, we study the performance
of the controller when both stages suffer from an IMA  disturbance
series. In such a situation, Eq. (21) is rewritten as follows:⎧⎪⎪⎨
⎪⎪⎩

x1 =
[

5
2

]
+

[
2 1
0 2

]
x0 +

[
−2 0
0 −1

]
u1 + d1,

x2 =
[

10
8

]
+

[
2 1
1 3

]
x1 +

[
−2 −1
−1 −2

]
u2 + d2.

where both d1 and d2 take the form of

dt = dt−1 + �t − �T �t−1,
where ε1, ε2 ∼ N2(0, I2), and t is the index of “run”. Here, we  set
� = (0.6, 0.6)T for all of the stages.

Following the same simulation procedure that was described
earlier with 100 replicates, we obtain the results and show them

l 100 replicates.
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Table 2
The MSEs of the outputs for all of the stages.

Controller Stage Target Mean of all 36,000 observations Covariance of all 36,000 observations Average MSE

EWMA  controller
Initial input (20,10) (19.99,9.99)

[
9.01 0.05
0.05 4.02

]
38.39

Stage  1 (15,9) (14.17,8.45)

[
40.02 8.63
8.63 16.04

]
216.52

Stage  2 (7,5) (0.42,1.62)

[
90.53 56.14
56.14 57.97

]
340.82

Batch-MMP controller
Initial input (20,10) (19.99,9.98)

[
9.01 −0.03

−0.03 4.02

]
40.76

Stage  1 (15,9) (14.17,8.45)

[
8.29 −3.26

−3.26 5.86

]
46.24

Stage  2 (7,5) (7.63,5.50)

[
9.43 −2.21

−2.21 6.98

]
46.69

for all

i
i
s
M
o

E

Fig. 6. The MSEs 

n Table 2 and Fig. 6. For the traditional EWMA  controller, the MSE
s found to be enlarged stage by stage. However, the Batch-MMP
uccessfully maintains the MSE  on a relatively stable level. The final

SE  achieved by the Batch-MMP controller is 46.69, and only 14%

f the MSE  caused by the EWMA  controller.
Tables 1 and 2 show that if the process is controlled by the

WMA  controller without considering the coordination of multiple

Fig. 7. The locations of the wo
 100 replications.

stages, the resulting MSE  increases quickly from the initial input to
stage 1 and stage 2. The proposed MMP  controller instead shows
a much smaller increasing trend in the MSE. The reason is that the

propagation of variation across the stages is corrected at each stage.
Fig. 7 further shows a simulated process with 60 two-dimensional
samples, and the size of each batch is 10. Using the same param-
eters and disturbance models as those studied above (refer to

rkpieces in each stage.
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ables 1 and 2), the graphs show the distribution of the samples
t each stage.

In Fig. 7, the first row shows the quality states of the workpieces
hen the traditional EWMA  controller is applied, and the second

ow shows those when the Batch-MMP controller is used. As shown
n the figure, for the EWMA  controller, because no batch allocation
s applied, all of the clusters are formed randomly and overlap with
ach other. All of the clusters, therefore, share the same recipe.
ecause of the influence of the process noise, the distribution of
he points is enlarged stage by stage.

For the Batch-MMP controller, corrective actions are taken
fter each stage. For example, stage 1 increases the variation of
he points. However, before entering stage 2, the points are re-
lustered; the recipes of stage 2 are then customized for each batch.
ven if one cluster could deviate far from the target, the customized
ecipe would bring it back to the target. Therefore, the variation
fter stage 2 is still relatively small. Thus, the coordination of mul-
iple stages is helpful for improving the reduction in variation and
or improving the quality.

. Conclusions

In this paper, we proposed a Batch-MMP controller for MIMO
ultistage manufacturing processes. In batch-based semiconduc-

or manufacturing processes, the variation of the final output can be
ecomposed into within-batch variation and batch-to-batch vari-
tion. A framework that consists of a Batch-Allocator and an R2R
ontroller is then proposed. In this framework, the Batch-Allocation
s designed to make input batches have small differences within the
atches and have large differences between the batches; the R2R
ontroller is designed to generate customized recipes to compen-
ate for process disturbances and to move all of the batches to the
ame target.

The essence of the new proposal is to obtain better coordi-
ation among the stages of a complex manufacturing system.
ithout effective coordination, a disturbance at each stage prop-

gates to downstream stages and accumulates until the end
f the process. The batch-allocation operation breaks the accu-
ulation; the R2R controller eliminates accumulated deviations

nd brings all of the batches back to the target. Simulation
esults show that the Batch-MMP effectively reduces the varia-
ion.

In this study, we employed the modified K-Means algorithm for
lustering and the EWMA  controller for feedback control. For other
ypes of data structures and process dynamics, a different clustering

ethod or controller could be considered.
It should be noted that in a multistage process, estimation of

arameters for the model in Eq. (1) is critical. Inaccurate estimates
ay  affect the controller’s stability and robustness. Therefore, mod-

ling building and parameter estimation for such processes are
mportant topics for future research.

To the practitioners, the batch-allocation operation may  be
ime-consuming. However, if the saving of quality loss is profound,
he implementation of this operation should be pursued. In addi-
ion, the widely used high-speed product sorting equipment may
e one way to an automatic implementation of this operation in
ractice.

In a multistage process, the proper use of tolerance is criti-
al for preventing defect propagation and for reducing the overall
ost. When the Batch-MMP controller is applied, it inevitably
ffects the tolerance of the middle stages. It is possible that prod-

cts that were originally classified as no-go defects using the old
tandard are corrected by downstream stages and still satisfy the
nal quality requirements. Therefore, the tolerance synthesis for

 multistage manufacturing process that is equipped with the

[

ring Systems 32 (2013) 372– 381

Batch-MMP controller is also an important topic that deserves
future research efforts.
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Appendix. The modified K-Means algorithm for batch
allocation

(1) The algorithm starts with a user specified value of k. Takes
the first k points in the sample as the initial means and
form k groups. Also, one parameter should be specified:
the capacity of each group M.  Usually we assume the sam-
ple has a size of N × M.  Thus, we will finally obtain N full
groups.

(2) Initial assignment. Assign each point to its nearest group
which is not full. After each new point is added, calculate the
average within-group variation (AWGV), which is defined
as follows:

AWGV = 1
nM

n∑
i=1

M∑
j=1

(xij − x̄i)
T �(xij − x̄i),

where xij is the quality vector of the jth workpiece in group
i, and � is weight matrix measuring respective weights of
components of the quality vector.

(3) Optimization. Choose one point xij(1 ≤ i ≤ n, 1 ≤ j ≤ M).  Try
to exchange this point with another one xi1j(i1 /= i, 1 ≤ j ≤
M), i.e., assign xij this point to Group i1 and assign xi1j the
other point to Group i. Calculate the reduction of the AWGV.
Enumerate all points xi1j(i1 /= i, 1 ≤ j ≤ M),  determine the
greatest reduction of the AWGV for xij and exchange the
group assignments.

(4) Step (3) is iterated until all xij, i = 1, . . .,  n, j = 1, . . .,  M,  are
visited.
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